Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 13(1): 2868, 2023 02 17.
Article in English | MEDLINE | ID: covidwho-2262893

ABSTRACT

To assess if SARS-CoV-2 (COVID-19) systemic disease can be determined by available nucleoprotein assays, we compared the performance of three commercial SARS-CoV-2 nucleoprotein (N) assays in plasma. A total of 272 plasma samples collected in the period November-December 2021 were analyzed by the methods Simoa SARS CoV-2 N Protein Advantage Kit [Quanterix Simoa], Solsten SARS-CoV-2 Antigen enzyme immunosorbent assay (ELISA) [Solsten ELISA], and Elecsys SARS-CoV-2 Antigen electrochemiluminescence immunoassay [Elecsys ECLIA]. Additionally, a dilution series of inactivated virus culture was analyzed by the three assays. The SARS CoV-2 PCR-status was not known for the patients. Linear correlation in the pairwise correlation between assays as well as linearity of dilution series of inactivated virus culture was estimated by Spearman score. Sensitivity and specificity were estimated by pairwise comparison. The three assays showed poor agreement on patient samples with regards to concentration. Performance on virus culture was excellent but with different level of detection (LOD). Positive vs negative results show comparable sensitivity and specificity of Quanterix Simoa and Solsten ELISA, with a higher LOD in Elecsys ECLIA and thus lower sensitivity and high specificity. N by all tested assays can be used as a marker for systemic COVID-19 disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Plasma , Biological Assay , Immunosorbents , Nucleoproteins
2.
Sci Rep ; 11(1): 20323, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1467136

ABSTRACT

This study aimed to develop a highly sensitive SARS-CoV-2 nucleocapsid antigen assay using the single molecule array (Simoa) technology and compare it with real time RT-PCR as used in routine clinical practice with the ambition to achieve a comparative technical and clinical sensitivity. Samples were available from 148 SARS-CoV-2 real time RT-PCR positive and 73 SARS-CoV-2 real time RT-PCR negative oropharyngeal swabs. For determination of technical sensitivity SARS-CoV-2 virus culture material was used. The samples were treated with lysis buffer and analyzed using both an in-house and a pre-commercial SARS-CoV-2 nucleocapsid antigen assay on Simoa. Both nucleocapsid antigen assays have a technical sensitivity corresponding to around 100 SARS-CoV-2 RNA molecules/mL. Using a cut-off at 0.1 pg/mL the pre-commercial SARS-CoV-2 nucleocapsid antigen assay had a sensitivity of 96% (95% CI 91.4-98.5%) and specificity of 100% (95% CI 95.1-100%). In comparison the in-house nucleocapsid antigen assay had sensitivity of 95% (95% CI 89.3-98.1%) and a specificity of 100% (95% CI 95.1-100%) using a cut-off at 0.01 pg/mL. The two SARS-CoV-2 nucleocapsid antigen assays correlated with r = 0.91 (P < 0.0001). The in-house and the pre-commercial SARS-CoV-2 nucleocapsid antigen assay demonstrated technical and clinical sensitivity comparable to real-time RT-PCR methods for identifying SARS-CoV-2 infected patients and thus can be used clinically as well as serve as a reference method for antigen Point of Care Testing.


Subject(s)
COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Antigens, Viral/immunology , COVID-19 Serological Testing/methods , Coronavirus Nucleocapsid Proteins/analysis , Denmark , Diagnostic Tests, Routine , Humans , Immunoenzyme Techniques , Nasopharynx/virology , Nucleocapsid/analysis , Nucleocapsid/immunology , Phosphoproteins/analysis , Phosphoproteins/immunology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Single Molecule Imaging/methods , Virion/chemistry
3.
Clin Chem Lab Med ; 59(12): 1988-1997, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1376633

ABSTRACT

OBJECTIVES: We hypothesized that the amount of antigen produced in the body during a COVID-19 infection might differ between patients, and that maximum concentrations would predict the degree of both inflammation and outcome for patients. METHODS: Eighty-four hospitalized and SARS-CoV-2 PCR swab-positive patients, were followed with blood sampling every day until discharge or death. A total of 444 serial EDTA plasma samples were analyzed for a range of biomarkers: SARS-CoV-2 nuclear antigen and RNA concentration, complement activation as well as several inflammatory markers, and KL-6 as a lung marker. The patients were divided into outcome groups depending on need of respiratory support and death/survival. RESULTS: Circulating SARS-CoV-2 nuclear antigen levels were above the detection limit in blood in 65 out of 84 COVID-19 PCR swab-positive patients on day one of hospitalization, as was viral RNA in plasma in 30 out of 84. In all patients, complete antigen clearance was observed within 24 days. There were definite statistically significant differences between the groups depending on their biomarkers, showing that the concentrations of virus RNA and antigen were correlated to the inflammatory biomarker levels, respiratory treatment and death. CONCLUSIONS: Viral antigen is cleared in parallel with the virus RNA levels. The levels of antigens and SARS-CoV-2 RNA in the blood correlates with the level of IL-6, inflammation, respiratory failure and death. We propose that the antigens levels together with RNA in blood can be used to predict the severity of disease, outcome, and the clearance of the virus from the body.


Subject(s)
C-Reactive Protein/analysis , COVID-19/pathology , Complement C3d/analysis , Interleukin-6/blood , Nucleocapsid/blood , RNA, Viral/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/virology , Female , Hospitalization , Humans , Male , Middle Aged , Prognosis , RNA, Viral/metabolism , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Viral Load , Young Adult
4.
Sensors (Basel) ; 21(2)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1016225

ABSTRACT

The outbreak of the coronavirus disease (COVID-19) pandemic caused by the novel coronavirus (SARS-CoV-2) has been declared an international public health crisis. It is essential to develop diagnostic tests that can quickly identify infected individuals to limit the spread of the virus and assign treatment options. Herein, we report a proof-of-concept label-free electrochemical immunoassay for the rapid detection of SARS-CoV-2 virus via the spike surface protein. The assay consists of a graphene working electrode functionalized with anti-spike antibodies. The concept of the immunosensor is to detect the signal perturbation obtained from ferri/ferrocyanide measurements after binding of the antigen during 45 min of incubation with a sample. The absolute change in the [Fe(CN)6]3-/4- current upon increasing antigen concentrations on the immunosensor surface was used to determine the detection range of the spike protein. The sensor was able to detect a specific signal above 260 nM (20 µg/mL) of subunit 1 of recombinant spike protein. Additionally, it was able to detect SARS-CoV-2 at a concentration of 5.5 × 105 PFU/mL, which is within the physiologically relevant concentration range. The novel immunosensor has a significantly faster analysis time than the standard qPCR and is operated by a portable device which can enable on-site diagnosis of infection.


Subject(s)
Biosensing Techniques/instrumentation , COVID-19 Testing/instrumentation , COVID-19/diagnosis , COVID-19/virology , Point-of-Care Testing , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Antigens, Viral/analysis , Biosensing Techniques/methods , COVID-19 Testing/methods , Dielectric Spectroscopy , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Equipment Design , Graphite , Humans , Limit of Detection , Pandemics , Proof of Concept Study , Protein Subunits , SARS-CoV-2/immunology , Single Molecule Imaging/instrumentation , Single Molecule Imaging/methods , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL